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Abstract--The paper presents a method of evaluation of a time constant that describes relaxational heat 
exchange between vapour bubbles and superheated liquid. The Scriven equation of bubble growth solved 
in a numerical way is used to determine the temperature field in the surroundings of the growing bubble. 
However, irLitial and boundary conditions are different from those studied before. The heat transfer 
relaxation time is determined from variations of the average temperature of the superheated liquid sur- 
rounding the bubble. Calculations are performed in both Euler's and Lagrange's descriptions. The relax- 
ation time obtained in the present paper is compared with the relaxation time reevaluated from the Moby 

Dick experiment by means of the homogeneous relaxation model. 

1. INTRODUCTION 2. RELAXATION TIME 

It is widely recognized that the heat transfer 
between the liquid and vapour bubbles has a decisive 
influence on wave propagation in one-component 
two-phase flow (Bilicki et al. [1], Bilicki and Kestin 
[2], Downar-Zapolski [3]). The simplest model 
accounting for that fact is the homogeneous relaxation 
model (HRM). On the grounds of HRM it is possible 
to explain variatio]as of the pressure distribution in 
near critical flows [1]. So far the relaxation time 0, 
which is an important feature of the model, has been 
determined mainly with the help of dimensional analy- 
sis of experimental data. The aim of this paper is to 
present a theoretical way of assessment of this 
parameter. 

The heat transfe:r between the superheated liquid 
and the growing vapour bubble has been widely dis- 
cussed in the literalure (Scriven [4], Hsieh [5], Pros- 
peretti and Plesset [6], Plesset [7]). The initial growth 
of the bubble nucleus depends strongly on the inter- 
facial mechanical interactions like acceleration, pres- 
sure forces and surface tension forces (Madejski and 
Staniszewski [8]). During this stage thermal phenom- 
ena are negligible. Therefore, this stage is called iso- 
thermal. As the nucleus radius increases the bubble 
growth becomes mostly dependent on supply of the 
heat that is consumed to vaporize the liquid on the 
bubble surface. During this stage the rate of expansion 
of the bubble is much lower than during the isothermal 
stage. The bubble and the liquid surrounding it can 
be assumed to make up an isobaric system. This stage 
of the bubble growth is called isobaric. It is worth 
noticing that duration of the isothermal stage is very 
short, compared to lhe isobaric stage. 

In the present paper a model set forth by Scriven 
[4] is used to determi]ae the field of temperature around 
the vapour bubble. 

Any thermodynamic system is described by means 
of certain thermodynamic parameters such as pres- 
sure, temperature, density and others characterizing 
the state of the system. Among many states of the 
system, the state of equilibrium is a distinguished one. 
In this state all thermodynamic parameters have well- 
defined values, being constant in space and time as 
long as the system is isolated from its surroundings. 
Any action of external thermodynamic forces on the 
system in equilibrium leads to a nonequilibrium state. 
The system regains its thermodynamic equilibrium 
spontaneously. However, as a result of interaction 
with the surroundings its parameters may obtain 
different values. The transition of the thermodynamic 
system from nonequilibrium to equilibrium is called 
relaxation. The time during which the transition takes 
place is called relaxation time. It is assumed that the 
relaxation time is equal to the time in which a ther- 
modynamic parameter changes from its initial value 
to a value e times lower. This definition comes from 
the dynamic analysis of phenomena described by a 
quantity Y(t) decreasing exponentially with time 

Y( t )=  Y(0) exp ( -  ; ) .  (1) 

The relaxation time 0 appears here as a time constant, 
setting the rate of decay of the quantity Y(t). 

The state of the thermodynamic system is usually 
described by a function of chosen thermodynamic 
parameters. The relaxation time corresponding to 
different parameters may be different. The largest 
value is considered to be the relaxation time of the 
entire thermodynamic system. In two-phase flow the 
highest value belongs to the relaxation time related to 
evaporation or condensation. 
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NOMENCLATURE 

A nozzle cross-section area [m 2] 
a thermal diffusivity [m 2 s-1] 
C nozzle circumference [m] 
cp specific heat at constant pressure 

[J kg -1 K-:]  
h enthalpy per unit mass [J kg -1] 
h]v latent heat of evaporation [J kg- J] 
p pressure [Pa] 
r distance from the centre of the vapour 

bubble [m] 
rk outer radius, defined by equation (17) 
R(t)  radius of the vapour bubble [m] 
s dimensionless parameter 
t time [s] 
T temperature [K] 
A T superheating of the liquid [K] 
V volume [m 3] 
w velocity [m s -i] 
x dryness fraction (vapour mass 

fraction) 
z distance from the nozzle inlet [m]. 

Greek symbols 
c~ heat exchange coefficient 
fl value of parameter s at the bubble 

boundary 
~o void fraction (vapour volume 

fraction) 
)~ coefficient of thermal conductivity 

[W m- :  K -I] 
0 relaxation time [s] 
p density [kg m-3] 
a surface tension [kg S -2] 

integration variable. 

Subscripts 
1 liquid 
s value at saturation 
v vapour 

value at a large distance from the 
vapour bubble 

0 initial value. 

The relaxation time due to the growth of the vapour 
bubble of initial radius R0 has been determined from 
time variations of the average temperature 7~1 of the 
superheated liquid surrounding the bubble. To rep- 
resent the bubble surroundings a sphere of outer 
radius rk > R0 has been chosen. The average tem- 
perature in this domain is a function of time defined 
as follows : 

where 

1 4 ~r, 
~ ( t )  = Vl(t-~ rc J,,,) r 2Tl(r) dr 

Vl(t) = ~7:(r] - [R(t)] 3) (2) 

is the instantaneous volume of the liquid. For a fixed 
value of rk, the function 7~L(t) may be calculated 
between instants to = 0 and tk, the final instant tk 
determined from relation R(tk) = rk. 

The total drop of the average temperature of the 
liquid is equal to its initial superheating. According to 
the definition (1), the relaxation time 0x related to the 
temperature of the liquid is equal to the time during 
which the average temperature decreases to 

7~,(0T) = Ts+AT0e -I ~ Ts+O,368ATo. (3) 

Let the average superheating of the liquid 
AT = 7~t - Ts be introduced. In Fig. 1, the evaluation 
of the relaxation time based on time evolution of the 
average superheating AT is presented. It has been 
assumed that the initial value of void fraction 
~o0 = 0.01, initial superheating of the liquid AT0 = 2.0 
K and the initial bubble radius R0 = 0.1 mm. 

The relaxation time determined from growth of a 

T [K] 2 
1.6 ~ _  
1.2 
0.8 ................ 
0.4 
0 

5 10 15 20 25 30 
t [ms] 

Fig. 1. Determination of the relaxation time 0x from time 
evolution of the average liquid superheating AT in the sur- 

roundings of the vapour bubble. 

single vapour bubble can describe the heat and mass 
exchange in the entire bubble flow if the flow is homo- 
geneous, that is when the distance between all neigh- 
bouring bubbles in a control volume is the same and 
all bubbles have the same radius. 

3. RELAXATION MODEL 

In this chapter we concentrate on evaporation, or 
formation of the vapour phase. The process of evap- 
oration can turn particularly intensive during a rapid 
pressure drop in the liquid. Then this process is 
referred to asflashin9. Correct determination of flash- 
ing flow requires taking into account thermodynamic 
nonequilibrium between the phases. One of the models 
allowing for nonequilibrium is the homogeneous 
relaxation model (HRM) [2]. Within the framework 
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of HRM it is assumed that vapour and liquid phases 
move with equal velocities and that the structure of 
the flow is a homogeneous mixture of the two phases. 
Furthermore, it is assumed that the flow is one-dimen- 
sional (1D). Let us consider a steady flow through a 
nozzle of varying cross-section A = A(z) without the 
influence of mass forces and without heat exchange 
with the surroundings. The conservation laws for 
mass, momentum and energy of the homogeneous 
two-phase mixture can be written in the form 

1 d p  1 d w  1 dA 
-~ (4) 

p dz w dz A d z  

dw ~z C 
pWaTz + = - ~  (5) 

,:th dw 
dz + w dzz = 0. (6) 

In HRM, thermodynamic nonequilibrium is described 
by an additional equation 

,::Ix x - .2 
dz - O~w " (7) 

Equation (7) defines the rate at which the local non- 
equilibrium dryness fraction x tends toward its local 
equilibrium value .~(p,h). In this model the time 
needed to reach the state of equilibrium is pro- 
portional to a parameter 0~, the relaxation time of the 
dryness fraction x. 

In equations (4)-(7), dependent variables 
(p,p, w,x)  are the averaged nonequilibrium par- 
ameters of the two-phase mixture. The set of the above 
equations is supplemented with the state equation 

h = h(p, p, x) = xhw(p) + (1 - x )h , (p ,  Tt(p, p, x)) 

(8) 

where &dP) denotes the enthalpy of the vapour at 
saturation and h~ denotes the enthalpy of the liquid in 
a metastable state. A closure equation defines shearing 
stress at the nozzle wall 

z = ½fw2p (9) 

wheref i s  an empirical friction factor. 
Considering the fact that the decisive influence on 

the phase formation during evaporation or con- 
densation is attributed to the heat exchange between 
the two phases, the relaxation equation (7) can be 
rewritten in another form 

dTi T I - T w  
- ( 1 0 )  

dz OTW 

As the temperature 7] and the dryness fraction x are 
coupled by the state equation, from equations (10) 
and (7) one can find the following relation between 
the spatial derivatives of those parameters 

dT, (or,) 1 dx 
d~-= \~h~ //p (1-- x dz (1--x) 2 dz 

F x dhvs +/'oh,) ]d l 
- [ 1 - x  dp \~PJT, J~J" (11) 

The relaxation time 0x or 0T is an additional function 
depending on the thermodynamic state of the system 
and should be defined by a separate equation. For- 
mulation of this equation comes across certain diffi- 
culties. One way to determine the relaxation time is 
dimensional analysis and construction of a correlation 
with experimental data [3]. A method to evaluate 0,. 
has been proposed in [1]. It is based on the fact that 
knowing the distribution of void fraction q~(z) along 
the nozzle from experimental measurements one can 
eliminate the dryness fraction from equation (7) with 
the help of the following relation 

Pvs 
x = q , - - .  ( 12 )  

P 

Then, after certain simplifications the relaxation time 
may be calculated as 

1 w dx 

0,. x - : Z  dz 

w I'pvs d~p pvs dp q~ dpw dp'~ 
pvs + "  p dp ) 
P 

(13) 

In the preceding equation Pvs denotes the density of 
the vapour at saturation. Equation (13) together with 
the conservation equations (4)-(6) and with the state 
equation (8) constitute a closed set of equations to 
calculate the function Ox(q~(z)), pressure, density and 
velocity distributions, and indirectly also the dryness 
fraction in nonequilibrium two-phase flow in the 
nozzle. Additionally, the distribution of the relaxation 
time 0T(~O(Z)) of heat exchange can be obtained from 
equations (10) and (l 1). 

4. FORMULATION OF THE HEAT EXCHANGE 
PROBLEM 

In this chapter an attempt is made to theoretically 
evaluate the relaxation time 0T related to evaporation 
in a two-phase medium. We are concerned with the 
changes of temperature in the surroundings of the 
vapour bubble growing in the superheated liquid. Let 
us refer to an equation proposed by Scriven [4] to 
describe dynamics of a spherical bubble growing in a 
homogeneous, quiescent liquid of infinite volume. The 
equation is valid during the isobaric stage when the 
influence of surface tension and pressure difference 
between the phases can be neglected. Other effects like 
vapour compressibility and viscosity, which under all 
but the most extreme conditions exert a minor influ- 
ence on the rate of growth of the bubble, are also 
disregarded. Furthermore, pressure and temperature 
gradients inside the bubble are neglected and the 
invariability of physical properties of the liquid and 
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vapour is assumed. As a result of these simplifications 
the vapour is at the saturation temperature. 

Because of the spherical symmetry of the local tem- 
perature field T~ a spherical system of coordinates is 
adopted with the origin in the bubble centre. With 
respect to the preceding assumptions and following 
from the equations of conservation of mass, momen- 
tum and energy Scriven [4] derived an equation which 
describes the distribution of temperature T~(r, t) in the 
liquid surrounding the bubble 

R2 ~T~ {~aT, +2_OT,~ 
0TI +e/~ (14) 
g-~- r 2 c~r - a, ~,0~-2 r &-r] 

with a parameter 

e = l  P,~ ' 
Pl 

and the Lagrangean velocity of the bubble surface 

dR 

dt 

Equation (14) together with the following boundary 
conditions 

Tt(R, t) = T~ T~(~, t) = T~ (15) 

and the initial condition 

T~(r, 0) = T~ (16) 

will thereafter be called the Scriven's model of growth 
of the vapour bubble. 

From the practical point of view it is useful to 
assume that in bubble two-phase flow there exists a 
finite number of bubbles submerged in the super- 
heated liquid. The distance between neighbouring 
bubbles depends on their concentration and is usually 
small. Therefore, growth of an individual bubble due 
to evaporation of the superheated liquid is determined 
by heat flux from its close surroundings as heat from 
more distant regions is consumed by other vapour 
bubbles present in the two-phase mixture under con- 
sideration. Thus, the boundary of the region which 
has a direct influence on dynamics of a single bubble 
is a surface on which there is no heat flux (let it be a 
sphere of radius rk). That fact is not incorporated in 
the Scriven's model but may be taken into account by 
a proper modification of the boundary conditions. 
Noting that the temperature of interfacial surface is 
determined by the heat flux q through this surface 

)~, (OTI) = c~[T,(R, t) - r~(rk, t)] = pvh,~t~ 
q= k DrJ~=R 

(17) 

equation (14) is augmented now by initial and bound- 
ary conditions in the form of 

~r ]~=~ = ~ [T'(R't)-Tl(rk't)]' \ ~rr J .... = 0 

(15a) 

T~(r,O) = T,+AT0 (16a) 

where a is the coefficient of the heat exchange on the 
interfacial surface and )~ is the coefficient of thermal 
conductivity of the liquid. Scriven's equation (14) to- 
gether with the conditions (15a) and (16a) will there- 
after be referred to as the modified model. The 
coefficient ~ is calculated from equation (17) with the 
help of the following relation for the velocity of the 
bubble surface 

t~= / 3 j a  / (  a, ~ (18) 
xlTt ~ \ t + t r J  

in which Ja is the Jakob number and tT is a constant 
determining the initial growth velocity. Equation (18) 
is an approximation valid during the isobaric stage 
[9]. 

The radius rk is evaluated from the simplifying 
assumption that the nuclei of respective bubbles are 
distributed in the nodes of a 3D grid consisted of cubic 
cells of side d. Furthermore, the distance between the 
nuclei is assumed to be constant in time. As a result 
of heat transfer from the superheated liquid sur- 
rounding a nucleus, evaporation takes place on its 
surface and the nucleus becomes a growing vapour 
bubble. It follows from the assumed nuclei dis- 
tribution that volume assigned to a single nucleus is 
equal to the volume of the elementary grid cell, that 
is a cube of side d. This observation allows us to 
determine the radius rk in equation (15a) 

= 37Zrk ~ rk = d ~ ~ 0.62d. (19) 

The radius of the bubble nucleus R0 at the initial 
moment to = 0 can be calculated from 

2o- Ts 
R0 - + 6 (20) 

pvhlv AT0 

where 6 is a deviation of the nucleus radius from its 
equilibrium value [8]. Thus the initial void fraction in 
the flow can be defined as 

~v g 3 

(21) 
~°  v , +  v0~ r 3 

The void fraction takes its minimum value when R0 
has its equilibrium value, i.e. 6 = 0 in equation (20). 
It is assumed that the maximum void fraction for 
which proposed models are valid is equal to 
q~m,x = 0.7. For higher values neighbouring bubbles 
would merge and the flow pattern would change. 

5. SOLUTION OF HEAT EXCHANGE PROBLEM 

The problem of heat exchange between the vapour 
bubble and the superheated liquid described by the 
Scriven's model [equations (14)-(16)] can be solved 
by means of the similarity transformation. To be 
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precise, it is assuraed that the solution of equation 
(14) can be written in the form 

T~(r, t) = T~(s) (22) 

where s is a nondimensional  time-independent par- 
ameter defined by l:he equation 

F 
s = 2~/(ad) ' (23) 

As a result of  this transformation the following 
ordinary differential equation is obtained 

d2 r '  2 (  ! + ~/~3"~ dTl 
ds: - - s -  s s ~ ,] ds (24) 

where fl is a value of the parameter s on the bubble 
surface, or fl = s(R, t). Equation (24) integrated twice 
yields 

Tj(s) = T~-zpvhl"-fl  3 exp(fl2+Zefl 2) I ~-5 
PlCpl ds 

2 8~3 

It follows from the first boundary condition (15) that 
Tl(fl) = T~. Thus, from equation (25) an integral equa- 
tion can be obtained 

AT~ = 2 p~h,,/3 3 exp (/3= + 2~fl2) ('|~ 1 
p, Cpl .J~ 

1 ~f13 
× exp ( -  ~ - 2 ~ - ) d ~  (26) 

from which fl should be calculated. AT~ = To~-T~ 
denotes here superheating of the liquid at a great 
distance from the vapour bubble. The equation above 
should be solved numerically. 

Since fl is determined the nondimensional  super- 
heating function AT(s) can be found from equation 
(25). Making use of equation (23) the function AT(s) 
can be transformed into the superheating temperature 
distribution AT(r) for any chosen instant t. In Fig. 2, 
the function AT(s) is shown together with AT(r) for 
chosen instants tl < t2 < 13 < t4 < ts .  

The similarity transformation can not be applied to 
solve the equations of  the modified model [equations 
(14), (15a), (16a)]. The temperature field described by 
thismodel should be found in a numerical way. An 
implicit finite difference scheme of Bri ley-McDonald 
has been used to perform the calculations in the Lag- 
rangean coordinates. 

6. RESULTS OF NUMERICAL CALCULATIONS 
AND COMPARISON WITH EXPERIMENT 

The relaxation time 0r has been evaluated for a 
growing vapour bubble in water under atmospheric 
pressure (p~ = 1.01 bar, T~ = 373.15 K). The fol- 
lowing data have been used for calculations: 

a) 

AT [K] 
1 

0.8 S 

0.6 

0 . 4  

0.2. 

0 100 200 300 400 S 

b) 

AT [K] 
t 1 

0.8 t~ 

0.6 

0.4 t5 

0.2 

0 Ro 2 4 6 6rk[mm] 10 

Fig. 2. Distribution of the liquid superheating AT = T~-- Ts 
around the vapour bubble: (a) as a function of the non- 
dimensional parameter s ; (b) as a function of the distance 
from the bubble centre, for chosen instants t~ < t2 < t3 < t4 
< ts. R0 indicates the bubble radius at the initial moment 

to = 0 and r k is a final radius of the bubble. 

a 1 = 1 6 . 9 × 1 0  -8 m 2 s - l ,  cp1=4216 J kg -1 K -~, 
hlv = 22.56 × 105J kg-1, Pl = 958.4 kg m -3, pv = 0.598 
kg m -3, ,,], = 0.6825 W m -1 K - l ,  tr = 0.0587 kg s -2. 

The dependence of  the initial void fraction ~o0 on 
the relaxation time 0r is calculated for two values of 
the liquid superheating: AT0~ = 1 K and AT02 = 2 K. 
The initial equilibrium bubble radius is then equal to 
R0~ = 0.0325 mm and Ro2 = 0.0162 mm respectively. 
The results of calculations performed for d = 4 mm 
are presented in Fig. 3. The obtained values of the 
relaxation time 0W depend on the initial superheating 
of the liquid AT0, namely 0T decreases with the 
increase in the superheating. Moreover, a rapid 
decrease in Or is observed when the initial void fraction 
increases, Both discussed models agree well for the 
small initial superheating of the liquid [Fig. 3(a)] but  
the results differ somehow with the rise in the initial 
superheating [Fig. 3(b)]. 

The influence of turbulence on the relaxation time 
has also been investigated. It is well recognized that 
turbulence intensifies heat transfer. In the models 
under study, turbulence in the liquid surrounding va- 
pour bubble can be simulated by the increase in the 
thermal diffusivity aj to account for an increase in the 
heat flux through the interfacial surface. This, in turn, 
should increase evaporation and accelerate the bubble 
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q~o 

0.1 

0 is] ¢ 

0.01 

0.001 
0 0.1 0 .2  0 .3  0 .4  0.5 0 .6  0 .7  

~ o  

b) 

o[s] ~ 
0.1 ................. l i ,  .......................................... i .................. I ............. .................. 

O . O l  ........... ~ ................ ~ i . . . . . . . . . . . . . . . . . . . .  
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 % 
Fig. 3. The relaxation time 0 as a function of the initial void 
fraction ~o0 according to the presented models for different 

values of the superheating of the liquid: (a) IK, (b) 2K. 

b) 

1 I ~ [ I I 
l I 

o [sl % - ~ i  i t 
o.1 ~ ................ 

0.01 I~ ' laminer  '1 ~ i  I 

0.001 i I ' .  q ~ . i ~ .  
0.1 0.2 0.3 0.4 0.5 0.6 0,7 

Fig. 4. Influence of the thermal liquid diffusivity al on the 
relaxation time: (a) in the Scriven's model and (b) in the 
modified model. The thermal diffusivity in laminar flow is 
al = 16.9x 10-Sm2s ~, in turbulent flowa] = 17x 1 0 - 7 m 2 s  1. 

growth. Therefore, lower values of  the relaxation time 
are expected. The expectation is confirmed by cal- 
culations whose results are presented in Fig. 4. The 
functions 0(q~0) shown there for two different values 
of  the thermal diffusivity refer to the superheating 
AT  = 1.0 K and to the distance between the bubbles 
d = 4 mm. For  a qualitative study of  turbulent flow it 
has been assumed somehow arbitrarily that the ther- 
mal diffusivity of  the liquid a~ is 10 times higher than 

in laminar flow. 
Predictions of  both discussed models have also been 

compared with values of  the relaxation time calculated 
from the Moby Dick [10] measurements of  two-phase 
flow in a divergent nozzle. A method presented in [1] 
has been used to evaluate the "experimental"  relax- 
ation time Ox. The calculations were based on equa- 
tions of  H R M  with the evolution equation (10) and 
were performed in a way similar to that described in 
Section 3. A comparison is presented in Fig. 5. Values 
of  the relaxation time obtained from the Moby Dick 
experiment (run 400) are plotted as black squares I I .  
Each value of  the void fraction corresponds to a 
different location in the nozzle. Therefore, each value 
of  the "experimental"  relaxation time refers to a 
different thermodynamic state. 

The comparative calculations were performed 
under conditions similar to those in the nozzle throat 

1 

0 Is] 

0.1 

0.01 i I i . . . . . . .  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 % 

Fig. 5. Comparison of the values of the relaxation time 
calculated on the grounds of the discussed models and the 

Moby Dick experiment (run 400). 

in run 400 of  the Moby Dick experiment, namely 
p = 1.5 bar, T~ = 384.528 K, AT  = 4.0 K, c~ = 4225 J 
kg - l ,  hlv = 22.26 x 105 J kg -1, Pl = 949.94 kg m -3, 
Pv = 0.8624 kg m -3, f l--0.9709244. As neither the 
thermal diffusivity al nor  the distance between the 
bubble nuclei d were determined in the experiment, 
their values were selected arbitrarily. For  a fixed value 
of  a~, the distance d was chosen to obtain the best 
agreement with the experimental data. For  a laminar 
value of  al = 17.0 x 10 -s m 2 s -~ we felt that the most 
suitable distance between the bubble nuclei was d = 7 
mm. The results of  calculations are presented in Fig. 
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5. Similar curves can be obtained for turbulent flow 
provided that a new value of  d is appropriately 
selected. 
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7. CONCLUSIONS 

The relaxation time evaluated on the grounds of  
the Scriven's theory of  growth of  the vapour bubble 
refers to evaporat ion on the interfacial surface of  a 
single bubble. The relaxation time 0T decreases with 
the increase in the initial void fraction. Lower values 
of  0T are also obtained when the superheating of  the 
liquid increases and for turbulent flow as modelled by 
a higher thermal diffusivity of  the liquid at. 

Modifications of  the boundary conditions, pre- 
sented in the paper, in the Scriven's model have led to 
a noticeable difference in evaluation of  the relaxation 
time if the liquid superheating exceeds AT  = 1K. 

A good agreement with the experimental data [10] 
was observed with respect to the relaxation time 0r 
evaluated with the aid of  the Scriven's model i f  the 
initial void fraction ~o 0 < 0.4. For  higher values of  the 
void fraction the predictions of  the modified model  
are more accurate. On the other hand, the modified 
model predicts too low values of  the relaxation time 
for small values of  ~00. It is believed that a reason for 
this lies in the simplified relation (18) for the velocity 
of  the bubble surfa,ze. This relation is an approximate 
solution of  the problem of  heat exchange between the 
vapour  bubble and the superheated liquid and should 
be improved for small bubbles. 
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